- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Brody, Leo (1)
-
Cai, Runxia (1)
-
Li, Fanxing (1)
-
Rukh, Mahe (1)
-
Saberi Bosari, Azin (1)
-
Schomäcker, Reinhard (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Sorption-enhanced steam reforming (SESR) of toluene (SESRT) using catalytic CO2sorbents is a promising route to convert the aromatic tar byproducts formed in lignocellulosic biomass gasification into hydrogen (H2) or H2-rich syngas. Commonly used sorbents such as CaO are effective in capturing CO2initially but are prone to lose their sorption capacity over repeated cycles due to sintering at high temperatures. Herein, we present a demonstration of SESRT using A- and B-site doped Sr1−xA’xFe1−yB’yO3−δ(A’ = Ba, Ca; B’ = Co) perovskites in a chemical looping scheme. We found that surface impregnation of 5–10 mol% Ni on the perovskite was effective in improving toluene conversion. However, upon cycling, the impregnated Ni tends to migrate into the bulk and lose activity. This prompted the adoption of a dual bed configuration using a pre-bed of NiO/γ–Al2O3catalyst upstream of the sorbent. A comparison is made between isothermal operation and a more traditional temperature-swing mode, where for the latter, an average sorption capacity of ∼38% was witnessed over five SESR cycles with H2-rich product syngas evidenced by a ratio of H2: COx> 4.0. XRD analysis of fresh and cycled samples of Sr0.25Ba0.75Fe0.375Co0.625O3-δreveal that this material is an effective phase transition sorbent—capable of cyclically capturing and releasing CO2without irreversible phase changes occurring.more » « less
An official website of the United States government
